

# Acknowledgement of country

# **Dave Colls**

- @davidcolls
- @safetydave
- safetydave.net



# Background on embeddings

## Embeddings

aka semantic space, latent space, vector, etc

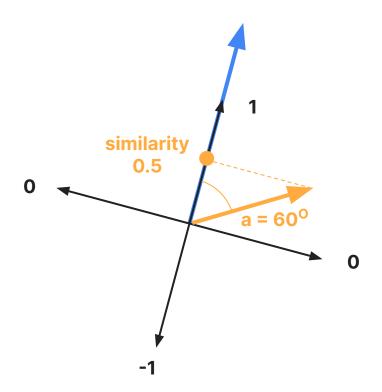
A list (vector) of numbers [0.5, 0.77, 0.03, ...]

Similar things are "close" together



dimension 0

## Measuring similarity with cosine





Cosine similarity puns are sticky

## Making embeddings

| Input data     | Train ML model                                                     | → Use model                                       |
|----------------|--------------------------------------------------------------------|---------------------------------------------------|
| Any modality   | Learn similarities in the data, with some measure of loss          | Convert new inputs to embeddings, and back again  |
| Text documents | Predict words based on surrounding words Word2Vec (CBOW/skip-gram) | "Cat" → [0.5, 0.77,]<br>[0.5, 0.8,] → "Cat", "Dog |

## Embeddings in Thoughtworks ANZ projects

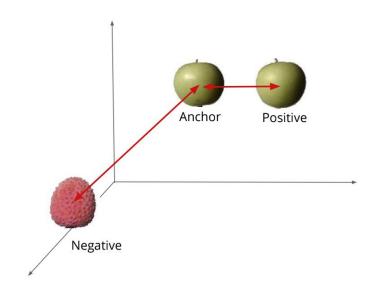
#### This time with images & contrastive learning/triplet loss

**Prompt** 

Al found similar styles...







"RoomNet" spike

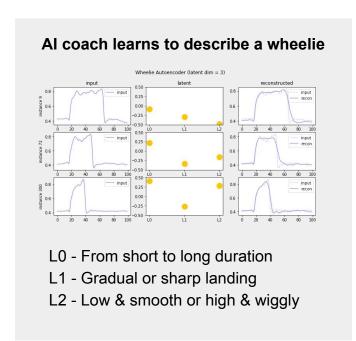
"ProduceNet" representation learning

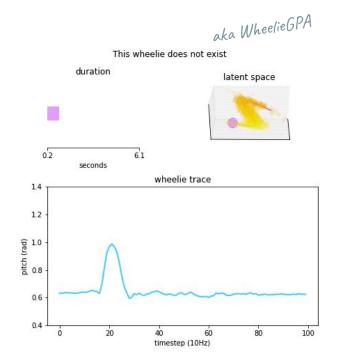
## Embeddings in personal projects

#### This time with time series accelerometer data & autoencoders



The Lockdown Wheelie Project

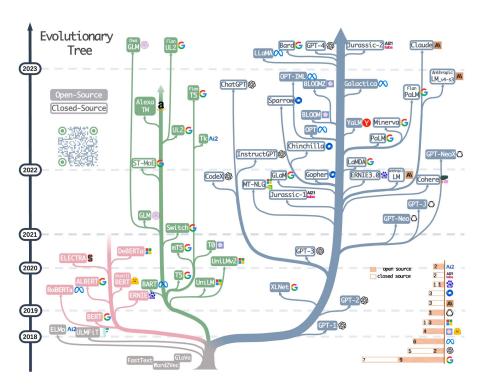




## Making embeddings

| Input data                          | Train ML model                                   | → Use model                   |
|-------------------------------------|--------------------------------------------------|-------------------------------|
| Text documents                      | Predict words based on surrounding words         | "Cat" → [0.5, 0.77,]          |
|                                     | Word2Vec<br>(CBOW/skip-gram)                     | [0.5, 0.8,] → "Cat", "Dog", . |
| Collection of images with manual or | Ensure similar inputs are closer than dissimilar | <b>△</b> → [0.5, 0.77,]       |
| self-generated labels               | Contrastive Learning (Triplet Loss)              | [0.5, 0.8,] → 📤, 👛            |
| Time series data                    | Output reproduces input via bottleneck           | → [0.5, 0.77,]                |
|                                     | Autoencoder<br>(weighted loss)                   | [0.5, 0.8,] → ,               |

## Embeddings in LLMs

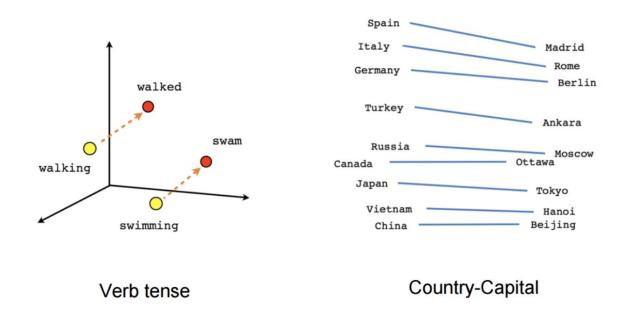


https://github.com/Mooler0410/LLMsPracticalGuide

```
curl https://api.openai.com/v1/embeddings \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -d '{
    "input": "Your text string goes here",
    "model": "text-embedding-ada-002"
    }'
```

## Semantic algebra with embeddings

#### Kinda handy, like we might do with spatial vectors



## But may come with bias and harmful results

#### Motivating careful curation of training data or de-biasing treatment



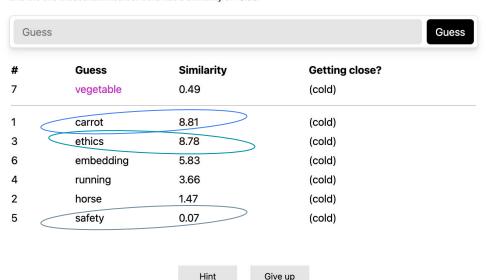
Someone made a game of hide and seek from embeddings...

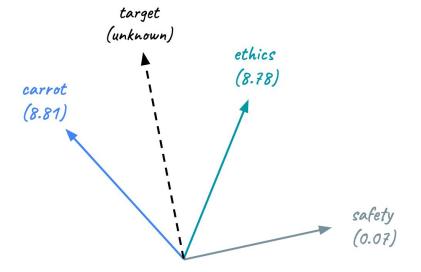
## Semantle - a game of semantic hide and seek

#### Semantle

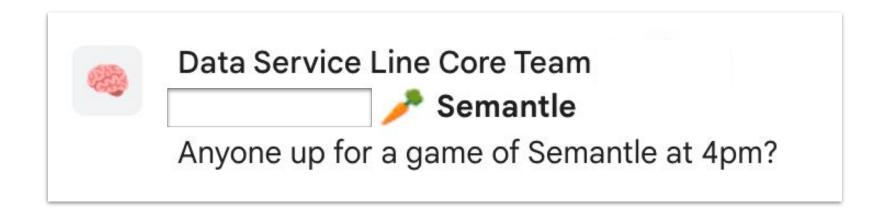


Today is puzzle number **494**.The nearest word has a similarity of **83.89**, the tenth-nearest has a similarity of 45.49 and the one thousandth nearest word has a similarity of 19.85.





## Any given Friday



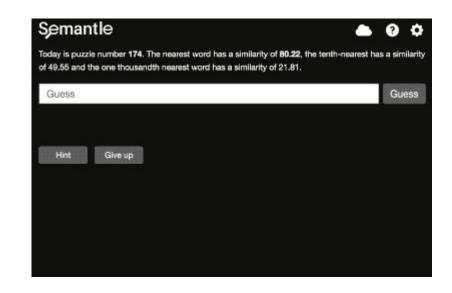
... and you'll never guess what I did next

(In the world before ChatGPT)

#### Automated and augmented semantle solvers

#### Personal project aims

- Fu Play around and find out
- Get a better feeling for how embeddings capture semantics
- Find solutions automatically with different approaches - but also...
- Explore how people and machines work together on problems

















https://safetydave.net/sketching-semantle-solvers/ https://safetvdave.net/second-semantle-solver/ https://safetvdave.net/synthesising-semantle-solvers/ https://safetydave.net/smarter-semantle-solvers/

## Let's play live!

#### Oh I'm asking for trouble

#### This browser (screen shared)

- ✓ Setup:
  - Go to <a href="https://semantle.com">https://semantle.com</a>
  - Select play with friends
  - Get game code and share

- Watch the demo:
  - Make your own guesses if you like

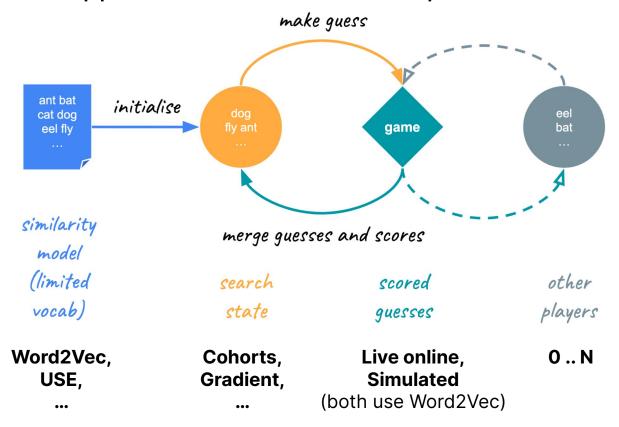
#### Solver browser (playing same game)

- Setup:
  - Run notebook, which loads https://semantle.com
     with webdriver
  - Manually select play with friends
  - Manually enter game code

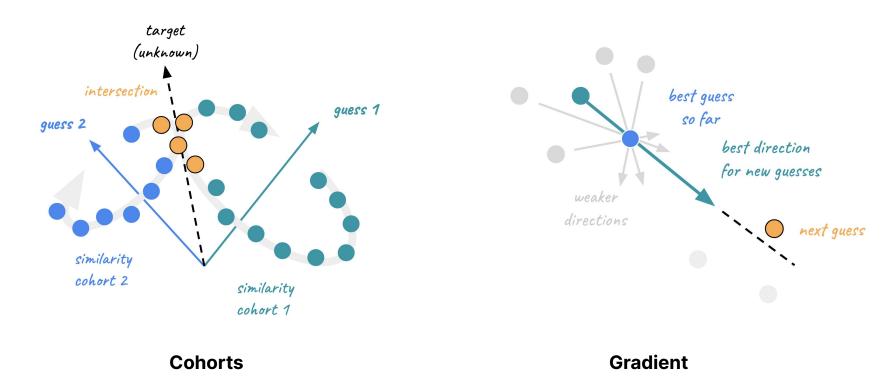
#### Start the demo:

 Run the solver method which will make guesses based on the game state

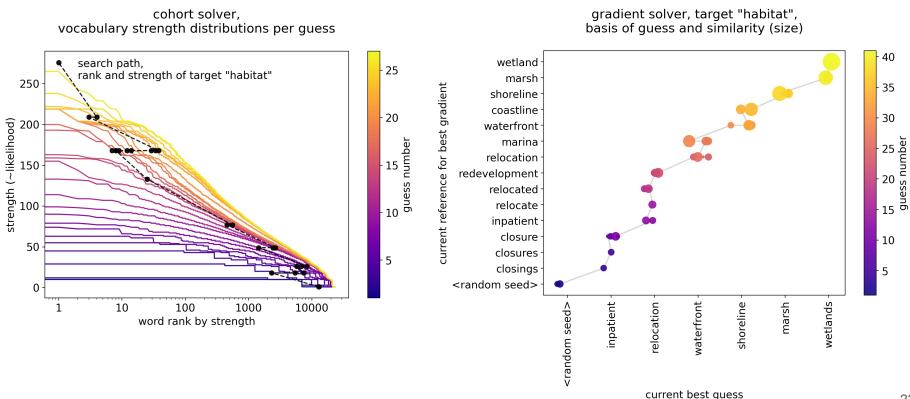
#### Simplified RL approach with modular components



## Two semantic search strategies - conceptual



## Two semantic search strategies - visualised



## What about ChatGPT?

## Obviously, we must ask ChatGPT to play

#### Just prompting for now

You are playing a game called semantle, where you must discover a hidden word by making guesses. For each guess you will get a score out of 100 that measures how close the guess is to the hidden word, based on word2ec cosine similarity. What is your first guess?

#### Intro game

My first guess in the game Semantle would depend on the context and any hints or clues provided. Without any specific information, I will make a random guess. Let's go with the word "sunshine."

No context,

The score for "sunshine" is 6.74

random guess

Based on the score of 6.74 for the word "sunshine," it seems that the hidden word is not closely related to "sunshine." To make a more informed guess, I would need additional information or context about the hidden word. Could you provide any hints or clues to narrow down the possibilities?

Moar hints pls!

Ok. I will make guesses too, and give you the result in the format "guess: score". After each of my guesses, you should make another guess

I'll play too

Sure, I'm ready to continue the game. Please provide your first guess, and I'll give you the result in the format "guess: score." After that, I'll make my next guess based on the information provided. Let's proceed!

civilization: 20.01

Helpful clue

§ Yo

Your guess: civilization

Score: 20.01

Based on the given score, it appears that the hidden word is somewhat related to "civilization." Here's my guess:

My guess: history

Semantically

similar guess

#### ChatGPT finds semantle hard too

#### Anyone who's played can relate to this



Thank you for the score. Based on the low score for "Duration," it seems that it is not close to the hidden word.

Gets stuck in local maxima

Since this is a word-guessing game and the scores provided have not indicated a close match yet, it is challenging to make an accurate guess without additional information or context.

Vents about Semantle (don't anthropomorphise though)

Could you please provide any hints or clues related to the hidden word? It would greatly help in making a more informed guess.

# What can we learn from playing semantic hide and seek?

#### Team heuristics /



#### Things we learned

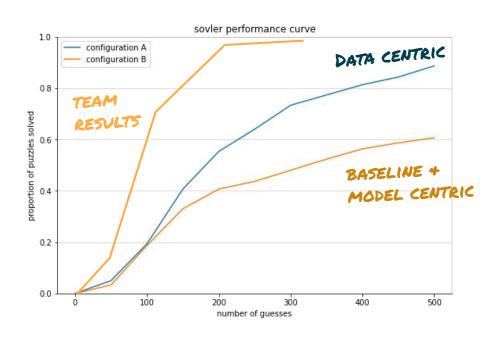
- Play on a Friday afternoon with the Data & Al team 🍹
- Start with "carrot" (no empirical basis for effectiveness)
- It's usually not a complicated word
- Helpful search strategies:
  - Diverse styles 🤿
  - Antonyms may be similar, not just synonyms
  - Try different verb conjugations, etc 🔀
  - Extrapolate a sentiment vector from ~1,000 word to ~100 word (typically this is only rationalised post-hoc)
  - Hints are OK after 300 guesses □

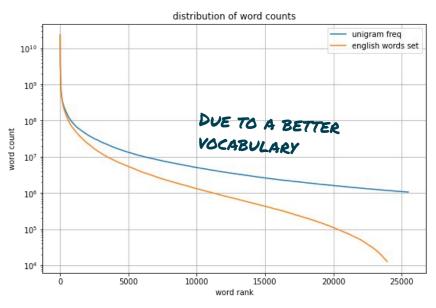
## Robustness to varying semantics

|                 | People semantics                    | Word2Vec similarity<br>(same as Semantle) | USE similarity                     |
|-----------------|-------------------------------------|-------------------------------------------|------------------------------------|
| People search   | Somewhat inscrutable                |                                           |                                    |
|                 | Somewhere from<br>13 to 307 guesses |                                           |                                    |
| Cohort search   |                                     | Arbitrarily good performance (cheat)      | Significantly degraded performance |
| Gradient search |                                     | Almost as good as human performance       | Minimal performance degradation    |

## Data-centric improvement efforts

#### **Beat model-centric**





#### Human and machine learn from each other

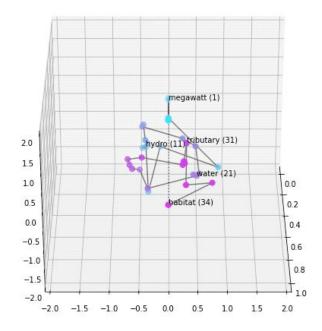
#### When playing together

#### One can unstick the other

The high-dimensional semantic search space is highly non-linear (it's hard to find the secret word unless you're already close, and you can get stuck on local maxima)

This is also true in designing products and services with many degrees of freedom - think software!

Social machines aid knowledge management

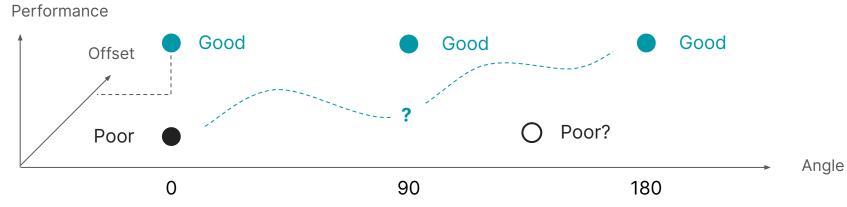


## For unsmooth design spaces





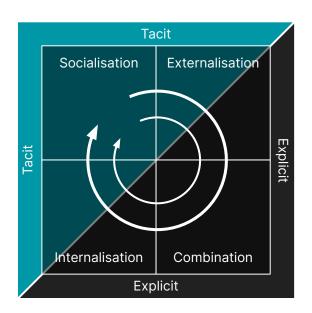




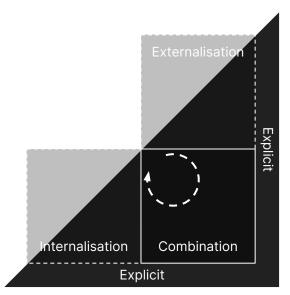
## Social machines aid knowledge management

#### Nonaka-Takeuchi or SECI model

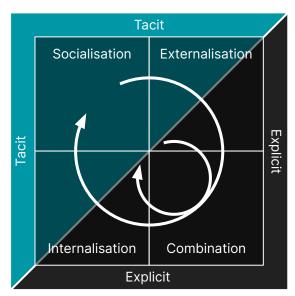
Human-driven



Naive exclusive automation



Social machines augment



## Thanks!

David Colls dcolls@thoughtworks.com

array([-9.27734375e-02, 8.10546875e-02, -1.00097656e-01, 2.07031250e-01, -2.53906250e-02, 1.17187500e-01, -2.42919922e-02, -4.73022461e-03, 1.38671875e-01. 1.82617188e-01. 2.45117188e-01. -1.77734375e-01 1.90429688e-01, -1.50390625e-01, -6.10351562e-03, 6.83593750e-02 -5.09643555e-03. 4.78515625e-02. 4.73632812e-02. -1.62109375e-01 1.78710938e-01. -4.39453125e-02. 6.46972656e-03. -1.60156250e-01 -1.92382812e-01, 1.08398438e-01, 1.11328125e-01, -8.83789062e-02, 6.49414062e-02. 1.12304688e-01. -1.50146484e-02. 9.82666016e-03 -2.79296875e-01. 4.27246094e-02. 1.04003906e-01. -1.00097656e-01 -8.34960938e-02, -1.29882812e-01, -1.36108398e-02, 3.58886719e-02 4.93164062e-02. 4.68750000e-02. -2.88085938e-02. -5.00488281e-02 -3.78417969e-02, -5.43212891e-03, -9.81445312e-02, 3.80859375e-02 -1.15234375e-01. 6.68945312e-02. 4.66308594e-02. 1.61132812e-02. 1.06933594e-01, 6.83593750e-02, -1.00708008e-02 1.69921875e-01. -1.49414062e-01. -1.49536133e-02. 4.63867188e-02 7.17773438e-02, 1.59179688e-01, -1.87988281e-02, -9.37500000e-02 1.07421875e-02. -1.51367188e-01. 2.04101562e-01. -1.58203125e-01 1.24511719e-02. 7.56835938e-02. -2.55584717e-04. 6.07910156e-02 5.37109375e-02, -1.28936768e-03, 4.46777344e-02, -8.48388672e-03 -9.03320312e-02. -1.31835938e-01. -2.10937500e-01. 3.49121094e-02. -1.66015625e-02, 2.34375000e-02, 6.05468750e-02, 9.81445312e-02 2.09045410e-03, -1.87500000e-01, 8.97216797e-03, -3.97949219e-02, -6.64062500e-02. 1.67968750e-01. 5.98144531e-02. 1.62109375e-01

1.24511719e-01, 1.83105469e-02, 1.29882812e-01, -6.25000000e-02, 3.65234375e-01, 1.15722656e-01, -1.32812500e-01, 2.11914062e-01, 3.00292969e-02, -9.17968750e-02, -5.17578125e-02, -2.08007812e-01, -6.68945312e-02, 1.75781250e-02, -1.41601562e-01, -1.96289062e-01, 1.05468750e-01, -7.91015625e-02, 3.66210938e-03, -1.20117188e-01, 1.81640625e-01, 6.25000000e-02, -8.49609375e-02, 1.69921875e-01, 1.872851562e-01, -1.11816406e-01, 2.05078125e-01, 7.08007812e-02, 5.27343750e-02, -3.80859375e-02, 3.93066406e-02, 1.37695312e-01, -2.12402344e-02, 1.25976562e-01, 2.14843750e-01, 1.88476562e-01, -2.5031250e-02, -6.54296875e-02, 6.71386719e-04, 7.32421875e-02, -1.59263611e-04, 2.12890625e-01, -1.20239258e-02, 6.68945312e-02, 1.4257812e-01, 6.78710938e-02, -1.62109375e-01, 5.32226562e-02, -1.43554688e-01, 1.56250000e-01, 1.01074219e-01, 1.15722656e-01, 5.02929688e-02, -7.12890625e-02, -4.54101562e-02, -7.95898438e-02, -1.08886719e-01, -4.02832031e-02, -1.69921875e-01, -9.61914062e-02, -9.37500000e-02, -3.98437500e-01, 1.29882812e-01, -1.74804688e-01, -7.86132812e-02, -1.58203125e-01, 4.68750000e-02, 5.76171875e-02, 6.64062500e-02, 1.14257812e-01, 4.68750000e-02, 5.76171875e-02, 6.64062500e-02, 1.12304688e-01, 6.44531250e-02, 3.75976562e-02, 1.10839844e-01, -2.34375000e-02, -4.76074219e-02, 2.62451172e-02, 1.6893845312e-01, 1.88476562e-01, 5.63964844e-02, 3.02734375e-01, 1.68945312e-01, 1.84326172e-02, 1.04003906e-01, 9.03320312e-02], dtype=float32)